Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0291512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796967

RESUMO

Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.


Assuntos
Pâncreas Exócrino , Neoplasias Pancreáticas , Camundongos , Animais , Células Acinares/metabolismo , Epitélio/metabolismo , Fatores de Transcrição/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fenótipo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
2.
Sci Rep ; 10(1): 20662, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244070

RESUMO

PDA is a major cause of US cancer-related deaths. Oncogenic Kras presents in 90% of human PDAs. Kras mutations occur early in pre-neoplastic lesions but are insufficient to cause PDA. Other contributing factors early in disease progression include chronic pancreatitis, alterations in epigenetic regulators, and tumor suppressor gene mutation. GPCRs activate heterotrimeric G-proteins that stimulate intracellular calcium and oncogenic Kras signaling, thereby promoting pancreatitis and progression to PDA. By contrast, Rgs proteins inhibit Gi/q-coupled GPCRs to negatively regulate PDA progression. Rgs16::GFP is expressed in response to caerulein-induced acinar cell dedifferentiation, early neoplasia, and throughout PDA progression. In genetically engineered mouse models of PDA, Rgs16::GFP is useful for pre-clinical rapid in vivo validation of novel chemotherapeutics targeting early lesions in patients following successful resection or at high risk for progressing to PDA. Cultured primary PDA cells express Rgs16::GFP in response to cytotoxic drugs. A histone deacetylase inhibitor, TSA, stimulated Rgs16::GFP expression in PDA primary cells, potentiated gemcitabine and JQ1 cytotoxicity in cell culture, and Gem + TSA + JQ1 inhibited tumor initiation and progression in vivo. Here we establish the use of Rgs16::GFP expression for testing drug combinations in cell culture and validation of best candidates in our rapid in vivo screen.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Adenocarcinoma/metabolismo , Animais , Cálcio/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Ceruletídeo/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Progressão da Doença , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Ductos Pancreáticos/efeitos dos fármacos , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais/efeitos dos fármacos , Gencitabina , Neoplasias Pancreáticas
3.
Dev Cell ; 50(6): 744-754.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31422917

RESUMO

Activating mutations in Kras are nearly ubiquitous in human pancreatic cancer and initiate precancerous pancreatic intraepithelial neoplasia (PanINs) when induced in mouse acinar cells. PanINs normally take months to form but are accelerated by deletion of acinar cell differentiation factors such as Ptf1a, suggesting that loss of cell identity is rate limiting for pancreatic tumor initiation. Using a genetic mouse model that allows for independent control of oncogenic Kras and Ptf1a expression, we demonstrate that sustained Ptf1a is sufficient to prevent Kras-driven tumorigenesis, even in the presence of tumor-promoting inflammation. Furthermore, reintroducing Ptf1a into established PanINs reverts them to quiescent acinar cells in vivo. Similarly, Ptf1a re-expression in human pancreatic cancer cells inhibits their growth and colony-forming ability. Our results suggest that reactivation of an endogenous differentiation program can prevent and reverse oncogene-driven transformation in cells harboring tumor-driving mutations, introducing a potential paradigm for solid tumor prevention and treatment.


Assuntos
Carcinogênese/patologia , Diferenciação Celular , Neoplasias Pancreáticas/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Camundongos , Neoplasias Pancreáticas/genética , Pancreatite/patologia , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
Nature ; 554(7693): 470-472, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469130
5.
Nature ; 554(7693): 470-472, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32094929
6.
Mol Cell Biol ; 36(24): 3033-3047, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697859

RESUMO

Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we examined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic acinar cell in vivo Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct on target genes and indirect through a ten-member transcription factor network. Depletion of PTF1A causes an imbalance that overwhelms the UPR, induces cellular injury, and provokes acinar metaplasia. Compromised cellular identity occurs by derepression of characteristic stomach genes, some of which are also associated with pancreatic ductal cells. The loss of acinar cell homeostasis, differentiation, and identity is directly relevant to the pathologies of pancreatitis and pancreatic adenocarcinoma.


Assuntos
Células Acinares/citologia , Perfilação da Expressão Gênica/métodos , Pâncreas Exócrino/citologia , Fatores de Transcrição/genética , Transcrição Gênica , Células Acinares/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Homeostase , Camundongos , Pâncreas Exócrino/metabolismo , Desdobramento de Proteína , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
7.
Mol Cell Biol ; 36(23): 2931-2944, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644325

RESUMO

Transcriptional networks that govern secretory cell specialization, including instructing cells to develop a unique cytoarchitecture, amass extensive protein synthesis machinery, and be embodied to respond to endoplasmic reticulum (ER) stress, remain largely uncharacterized. In this study, we discovered that the secretory cell transcription factor MIST1 (Bhlha15), previously shown to be essential for cytoskeletal organization and secretory activity, also functions as a potent ER stress-inducible transcriptional regulator. Genome-wide DNA binding studies, coupled with genetic mouse models, revealed MIST1 gene targets that function along the entire breadth of the protein synthesis, processing, transport, and exocytosis networks. Additionally, key MIST1 targets are essential for alleviating ER stress in these highly specialized cells. Indeed, MIST1 functions as a coregulator of the unfolded protein response (UPR) master transcription factor XBP1 for a portion of target genes that contain adjacent MIST1 and XBP1 binding sites. Interestingly, Mist1 gene expression is induced during ER stress by XBP1, but as ER stress subsides, MIST1 serves as a feedback inhibitor, directly binding the Xbp1 promoter and repressing Xbp1 transcript production. Together, our findings provide a new paradigm for XBP1-dependent UPR regulation and position MIST1 as a potential biotherapeutic for numerous human diseases.

8.
Mol Cell Biol ; 36(23): 2945-2955, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644326

RESUMO

Much remains unknown regarding the regulatory networks formed by transcription factors in mature, differentiated mammalian cells in vivo, despite many studies of individual DNA-binding transcription factors. We report a constellation of feed-forward loops formed by the pancreatic transcription factors MIST1 and PTF1 that govern the differentiated phenotype of the adult pancreatic acinar cell. PTF1 is an atypical basic helix-loop-helix transcription factor complex of pancreatic acinar cells and is critical to acinar cell fate specification and differentiation. MIST1, also a basic helix-loop-helix transcription factor, enhances the formation and maintenance of the specialized phenotype of professional secretory cells. The MIST1 and PTF1 collaboration controls a wide range of specialized cellular processes, including secretory protein synthesis and processing, exocytosis, and homeostasis of the endoplasmic reticulum. PTF1 drives Mist1 transcription, and MIST1 and PTF1 bind and drive the transcription of over 100 downstream acinar genes. PTF1 binds two canonical bipartite sites within a 0.7-kb transcriptional enhancer upstream of Mist1 that are essential for the activity of the enhancer in vivo MIST1 and PTF1 coregulate target genes synergistically or additively, depending on the target transcriptional enhancer. The frequent close binding proximity of PTF1 and MIST1 in pancreatic acinar cell chromatin implies extensive collaboration although the collaboration is not dependent on a stable physical interaction.

9.
Diabetes ; 65(9): 2810-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284104

RESUMO

Homozygous truncating mutations in the helix-loop-helix transcription factor PTF1A are a rare cause of pancreatic and cerebellar agenesis. The correlation of Ptf1a dosage with pancreatic phenotype in a mouse model suggested the possibility of finding hypomorphic PTF1A mutations in patients with pancreatic agenesis or neonatal diabetes but no cerebellar phenotype. Genome-wide single nucleotide polymorphism typing in two siblings with neonatal diabetes from a consanguineous pedigree revealed a large shared homozygous region (31 Mb) spanning PTF1A Sanger sequencing of PTF1A identified a novel missense mutation, p.P191T. Testing of 259 additional patients using a targeted next-generation sequencing assay for 23 neonatal diabetes genes detected one additional proband and an affected sibling with the same homozygous mutation. All four patients were diagnosed with diabetes at birth and were treated with insulin. Two of the four patients had exocrine pancreatic insufficiency requiring replacement therapy but none of the affected individuals had neurodevelopmental delay. Transient transfection assays of the mutant protein demonstrated a 75% reduction in transactivation activity. This study shows that the functional severity of a homozygous mutation impacts the severity of clinical features found in patients.


Assuntos
Pâncreas/metabolismo , Fatores de Transcrição/genética , Criança , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Mutação/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único/genética
10.
Elife ; 42015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151762

RESUMO

Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas.


Assuntos
Células Acinares/fisiologia , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Transdiferenciação Celular , Fatores de Transcrição/análise , Animais , Carcinoma in Situ/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Fatores de Transcrição/genética
11.
Development ; 141(22): 4385-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371369

RESUMO

The timing and gene regulatory logic of organ-fate commitment from within the posterior foregut of the mammalian endoderm is largely unexplored. Transient misexpression of a presumed pancreatic-commitment transcription factor, Ptf1a, in embryonic mouse endoderm (Ptf1a(EDD)) dramatically expanded the pancreatic gene regulatory network within the foregut. Ptf1a(EDD) temporarily suppressed Sox2 broadly over the anterior endoderm. Pancreas-proximal organ territories underwent full tissue conversion. Early-stage Ptf1a(EDD) rapidly expanded the endogenous endodermal Pdx1-positive domain and recruited other pancreas-fate-instructive genes, thereby spatially enlarging the potential for pancreatic multipotency. Early Ptf1a(EDD) converted essentially the entire glandular stomach, rostral duodenum and extrahepatic biliary system to pancreas, with formation of many endocrine cell clusters of the type found in normal islets of Langerhans. Sliding the Ptf1a(EDD) expression window through embryogenesis revealed differential temporal competencies for stomach-pancreas respecification. The response to later-stage Ptf1a(EDD) changed radically towards unipotent, acinar-restricted conversion. We provide strong evidence, beyond previous Ptf1a inactivation or misexpression experiments in frog embryos, for spatiotemporally context-dependent activity of Ptf1a as a potent gain-of-function trigger of pro-pancreatic commitment.


Assuntos
Endoderma/embriologia , Trato Gastrointestinal/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Organogênese/fisiologia , Pâncreas/embriologia , Fatores de Transcrição/metabolismo , Animais , Endoderma/metabolismo , Imunofluorescência , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Técnicas Histológicas , Camundongos , Microscopia Confocal , Organogênese/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Development ; 141(16): 3123-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063451

RESUMO

The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.


Assuntos
Células Acinares/citologia , Regulação da Expressão Gênica no Desenvolvimento , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Receptores Citoplasmáticos e Nucleares/fisiologia , Células-Tronco/citologia , Animais , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Transgenes
13.
Int J Dev Biol ; 57(5): 391-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873371

RESUMO

The homeobox gene Pdx1 is a key regulator of pancreas and foregut development. Loss of Pdx1 expression results in pancreas agenesis and impaired development of the gastro-duodenal domain including Brunner’s glands. We previously demonstrated a key role for Pdx1 in maintaining the integrity and function of insulin-secreting beta cells in the adult pancreas. In the present study, we aimed to determine if expression of Pdx1 is required to maintain the cellular identity of the gastro-duodenal domain in adult mice. Immunohistological studies were performed in a mouse model in which expression of Pdx1 was conditionally repressed with the doxycycline-responsive tetracycline transactivator system. Mice in which Pdx1 was chronically repressed developed hamartomas in the gastro-duodenal domain. These lesions appeared to arise from ectopic foci of anteriorized cells, consistent with a localised anterior homeotic shift. They emerge with the intercalation of tissue between the anteriorized and normal domains and appear strikingly similar to lesions in the colon of mice heterozygous for another Parahox gene, Cdx2. Continuing expression of Pdx1 into adult life is required to maintain regional cellular identity in the adult foregut, specifically at the gastro-duodenal boundary. Loss of Pdx1 expression leads to anterior transformation and intercalary regeneration of ectopic tissue. We propose a model in which the posterior dominance of classical Hox genes is mirrored by the Parahox genes, providing further evidence of the functional conservation of the Parahox genes. These findings may have implications for further understanding the molecular basis of gastro-duodenal metaplasia and gastro-intestinal transformations such as Barrett’s esophagus.


Assuntos
Anormalidades do Sistema Digestório/metabolismo , Trato Gastrointestinal/metabolismo , Hamartoma/metabolismo , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Fator de Transcrição CDX2 , Anormalidades do Sistema Digestório/genética , Duodeno/citologia , Duodeno/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Trato Gastrointestinal/citologia , Hamartoma/genética , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Estômago/citologia , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Cell Biol ; 33(16): 3166-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754747

RESUMO

The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Pâncreas/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Cromatina/genética , Sequência Consenso , DNA/genética , DNA/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Tubo Neural/metabolismo , Pâncreas/metabolismo , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo
15.
J Clin Invest ; 122(10): 3516-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23006325

RESUMO

Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.


Assuntos
Fator de Transcrição GATA4/fisiologia , Fator de Transcrição GATA6/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Organogênese/genética , Pâncreas/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Sítios de Ligação , Carboxipeptidases A/análise , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Modelos Animais de Doenças , Endoderma/metabolismo , Células Epiteliais/patologia , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/deficiência , Fator de Transcrição GATA6/genética , Técnicas de Silenciamento de Genes , Genótipo , Idade Gestacional , Hiperglicemia/congênito , Hiperglicemia/genética , Insulina/metabolismo , Secreção de Insulina , Camundongos , Proteínas do Tecido Nervoso/análise , Especificidade de Órgãos , Pâncreas/anormalidades , Pâncreas/patologia , Transcrição Gênica
16.
Dis Model Mech ; 5(6): 956-66, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22888097

RESUMO

Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements.


Assuntos
Células-Tronco Embrionárias/metabolismo , Mutação/genética , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Transcrição Gênica , Ativinas/genética , Ativinas/metabolismo , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Engenharia Genética , Loci Gênicos/genética , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas/genética , RNA não Traduzido , Ratos , Receptores Notch/genética , Receptores Notch/metabolismo , Recombinação Genética/genética , Elementos de Resposta/genética , Deleção de Sequência/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
17.
Gastroenterology ; 143(2): 469-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22510200

RESUMO

BACKGROUND & AIMS: Early embryogenesis involves cell fate decisions that define the body axes and establish pools of progenitor cells. Development does not stop once lineages are specified; cells continue to undergo specific maturation events, and changes in gene expression patterns lead to their unique physiological functions. Secretory pancreatic acinar cells mature postnatally to synthesize large amounts of protein, polarize, and communicate with other cells. The transcription factor MIST1 is expressed by only secretory cells and regulates maturation events. MIST1-deficient acinar cells in mice do not establish apical-basal polarity, properly position zymogen granules, or communicate with adjacent cells, disrupting pancreatic function. We investigated whether MIST1 directly induces and maintains the mature phenotype of acinar cells. METHODS: We analyzed the effects of Cre-mediated expression of Mist1 in adult Mist1-deficient (Mist1(KO)) mice. Pancreatic tissues were collected and analyzed by light and electron microscopy, immunohistochemistry, real-time polymerase chain reaction analysis, and chromatin immunoprecipitation. Primary acini were isolated from mice and analyzed in amylase secretion assays. RESULTS: Induced expression of Mist1 in adult Mist1(KO) mice restored wild-type gene expression patterns in acinar cells. The acinar cells changed phenotypes, establishing apical-basal polarity, increasing the size of zymogen granules, reorganizing the cytoskeletal network, communicating intercellularly (by synthesizing gap junctions), and undergoing exocytosis. CONCLUSIONS: The exocrine pancreas of adult mice can be remodeled by re-expression of the transcription factor MIST1. MIST1 regulates acinar cell maturation and might be used to repair damaged pancreata in patients with pancreatic disorders.


Assuntos
Células Acinares/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pâncreas Exócrino/citologia , Células Acinares/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Biomarcadores/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Pâncreas Exócrino/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
18.
Development ; 139(10): 1744-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22461559

RESUMO

Early pancreatic morphogenesis is characterized by the transformation of an uncommitted pool of pancreatic progenitor cells into a branched pancreatic epithelium that consists of 'tip' and 'trunk' domains. These domains have distinct molecular signatures and differentiate into distinct pancreatic cell lineages. Cells at the branched tips of the epithelium develop into acinar cells, whereas cells in the trunk subcompartment differentiate into endocrine and duct cells. Recent genetic analyses have highlighted the role of key transcriptional regulators in the specification of these subcompartments. Here, we analyzed in mice the role of Notch signaling in the patterning of multipotent pancreatic progenitor cells through mosaic overexpression of a Notch signaling antagonist, dominant-negative mastermind-like 1, resulting in a mixture of wild-type and Notch-suppressed pancreatic progenitor cells. We find that attenuation of Notch signaling has pronounced patterning effects on multipotent pancreatic progenitor cells prior to terminal differentiation. Relative to the wild-type cells, the Notch-suppressed cells lose trunk marker genes and gain expression of tip marker genes. The Notch-suppressed cells subsequently differentiate into acinar cells, whereas duct and endocrine populations are formed predominantly from the wild-type cells. Mechanistically, these observations could be explained by a requirement of Notch for the expression of the trunk determination gene Nkx6.1. This was supported by the finding of direct binding of RBP-jκ to the Nkx6.1 proximal promoter.


Assuntos
Pâncreas/citologia , Receptores Notch/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Citometria de Fluxo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Imuno-Histoquímica , Camundongos , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Receptores Notch/genética
19.
Development ; 139(1): 33-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096075

RESUMO

Neurog3-induced Dll1 expression in pancreatic endocrine progenitors ostensibly activates Hes1 expression via Notch and thereby represses Neurog3 and endocrine differentiation in neighboring cells by lateral inhibition. Here we show in mouse that Dll1 and Hes1 expression deviate during regionalization of early endoderm, and later during early pancreas morphogenesis. At that time, Ptf1a activates Dll1 in multipotent pancreatic progenitor cells (MPCs), and Hes1 expression becomes Dll1 dependent over a brief time window. Moreover, Dll1, Hes1 and Dll1/Hes1 mutant phenotypes diverge during organ regionalization, become congruent at early bud stages, and then diverge again at late bud stages. Persistent pancreatic hypoplasia in Dll1 mutants after eliminating Neurog3 expression and endocrine development, together with reduced proliferation of MPCs in both Dll1 and Hes1 mutants, reveals that the hypoplasia is caused by a growth defect rather than by progenitor depletion. Unexpectedly, we find that Hes1 is required to sustain Ptf1a expression, and in turn Dll1 expression in early MPCs. Our results show that Ptf1a-induced Dll1 expression stimulates MPC proliferation and pancreatic growth by maintaining Hes1 expression and Ptf1a protein levels.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pâncreas/embriologia , Células Secretoras de Polipeptídeo Pancreático/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bromodesoxiuridina , Proteínas de Ligação ao Cálcio , Imunoprecipitação da Cromatina , Galactosídeos , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Indóis , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/citologia , Fatores de Transcrição HES-1
20.
Curr Top Dev Biol ; 97: 55-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22074602

RESUMO

Notch-dependent CSL transcription complexes control essential biological processes such as cell proliferation, differentiation, and cell-fate decisions in diverse developmental systems. The orthologous proteins CBF1/Rbpj (mammalian), Su(H) (Drosophila), and Lag-1 (Caenorhabditis elegans) compose the CSL family of sequence-specific DNA-binding transcription factors. The CSL proteins are best known for their role in canonical Notch signaling. However, CSL factors also form transcription complexes that can function independent of Notch signaling and include repression and activation of target gene transcription. Because the different complexes share CSL as a DNA-binding subunit, they can control overlapping sets of genes; but they can also control distinct sets when partnered with tissue-specific cofactors that restrict DNA-sequence recognition or stability of the DNA-bound complex. The Notch-independent functions of CSL and the processes they regulate will be reviewed here with a particular emphasis on the tissue-specific CSL-activator complex with the bHLH factor Ptf1a.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ligação a DNA , Proteínas de Drosophila , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Proteínas Repressoras , Fatores de Transcrição , Transcrição Gênica/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Modelos Biológicos , Ligação Proteica , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...